
A polynomial time algorithm for the
fractional f -density

Guantao Chen∗1 and Guoning Yu†1

1Dept. of Math and Stat, Georgia State University , Atlanta, GA 30303

Abstract

Let G be a loopless multigraph and f be a function from V (G) to Z+ the set
of positive integers. The fractional f -density Wf is defined below:

W∗
f (G) = max

U⊆V,|U |≥2

|E(U)|
⌊f(U)/2⌋

.

We give a strongly polynomial-time algorithm for calculating W∗
f (G) in terms

of the number of vertices of G. Consequently, our algorithm extends the one
developed by Chen, Zang and Zhao for f = 1, i.e. f(v) ≡ 1 for every vertex
v ∈ V (G) [Densities, matchings, and fractional edge-colorings, SIAM Journal on
Optimization, 29 (2019), pp. 240-261].

An f -(edge)-coloring of G is an assignment of a color to each edge of G such
that each color appears at each vertex v ∈ V (G) at most f(v) times. The f -
chromatic index of a graph G, denoted by χ′

f (G), is the least integer k such that G
admits an f -coloring using k colors. Clearly, a proper graph edge-coloring, where
f ≡ 1, is a special f -coloring. The f -coloring problem has much more broader
applications than traditional edge-coloring such as the file transfer problem in
computer networks.

Let ∆f (G) = maxv∈V (G)

⌈
d(v)
f(v)

⌉
. Then, ∆f (G) and ⌈W∗

f (G)⌉ provide two
lower bounds for χ′

f (G). The Goldberg-Seymour Conjecture for f -coloring states
that χ′

f (G) ≤ max{∆f (G)+1, ⌈W∗
f (G)⌉}, which was recently confirmed by Chen,

Hao, and Yu. Combining their results, our algorithm implies that f -chromatic
number can be approximated by 1 in polynomial time.

Keywords: f -coloring; fractional edge-coloring; density
∗Partially supported by NSF grants DMS-1855716 and DMS-2154331 gchen@gsu.edu
†Partially supported by the University Graduate Fellowship of Georgia State University,

gyu6@gsu.edu

1

1 Introduction

Let G = (V,E) be a multigraph without any loop, and let f : V → Z+ be a function
which gives a positive integral label to each vertex of G. We call a spanning subgraph M

of G a degree-f subgraph (or an f -matching) if dM(v) ≤ f(v) for any v ∈ V (M), where
dM(v), called the degree of v in graph M , is the number of edges in M incident with v.
If every vertex v ∈ M has degree exactly f(v), such subgraph M is commonly known
as an f -factor. An f -edge-coloring (or an f -coloring) of graph G is an assignment of
colors to each edge such that each color class is an f -matching of G. The minimum
number of colors needed for an f -coloring is called the f -chromatic index and denoted
by χ′

f (G). The f -coloring problem is to determinate χ′
f (G) for a given graph G. By

definition, the traditional edge coloring is an f -coloring for which f ≡ 1, i.e., f(v) = 1

for every vertex v ∈ V (G).

By considering vertices that can be incident with more than one edge, the f -coloring
problem demonstrates a broader range of practical applications compared to traditional
edge coloring. One such example is the file transfer problem in computer networks,
where computers often need to send or receive multiple files simultaneously. For further
details on this topic, we recommend referring to the works of Choi and Hakimi (1988),
Coffman et al. (1985), Krawczyk et al. (1985), and Nakano and Nakano (1993) cited
in [3, 4, 8, 10].

It’s worth to note that the fundamental tool used in traditional edge-coloring is
the concept of a Kempe change applied to a component of a subgraph induced by
two colors, represented as an alternating path or cycle. However, when dealing with
a subgraph where the degree of vertex v is bounded by f(v), the structure becomes
significantly more complex. As a result, studying f -coloring poses considerably greater
challenges.

Let the fractional f -maximum degree be ∆∗
f (G) = max

v∈V
d(v)
f(v)

. For each U ⊆ V , let
f(U) =

∑
v∈U f(v). Let the fractional f -density of G be

W∗
f (G) = max

U⊆V,|U |≥2

w(U)

⌊f(U)/2⌋
.

We call ∆f (G) = ⌈∆∗
f (G)⌉ and Wf (G) = ⌈W∗

f (G)⌉ the f -maximum degree and f -
density of G, respectively. Clearly, ∆f (G) and Wf (G) are both lower bounds of χ′

f (G),
in other words, χ′

f (G) ≥ max{∆f (G),Wf (G)}.

2

For the upper bound, let µ(u, v) =
∑
e=uv

w(e) be the multiplicity of a pair of distinct

vertices u, v ∈ V . And for any v ∈ V , we denote µ(v) = max
u∈V,u̸=v

µ(u, v). Without in-

volving f -density, Hakimi and Kariv [9] proved ∆f (G) ≤ χ′
f (G) ≤ maxv∈V

⌈
d(v)+µ(v)

f(v)

⌉
.

The disadvantage of this result is the gap between the upper bound and the lower
bound could be larger than any given constant since µ(v) can be very large. The
Goldberg-Seymour Conjecture for f -coloring states that

max{∆f (G),Wf (G)} ≤ χ′
f (G) ≤ max {∆f (G) + 1,Wf (G)} .

Consequently, the f -chromatic index is completely determined or bounded between
two consecutive integers. The conjecture was recently confirmed by Chen, Hao and
Yu [1]. Clearly, ∆∗

f (G) can be computed in polynomial time. In this paper, we develop
an algorithm showing that Wf (G) can be computed in polynomial time as follows.
Consequently, both lower bound and upper bound of the Goldberg-Seymour Conjecture
for f -coloring can be computed in polynomial time.

Theorem 1.1. The fractional f -density W∗
f (G) of a multigraph G can be computed in

polynomial time in terms of the numbers of vertices and the numbers of edges of G.

When f ≡ 1, the fractional density W∗(G) is defined as

W∗(G) = max
U⊆V,|U |≥3 odd

2w(U)

|U | − 1
.

As a consequence, we have the following.

Corollary 1.2 (Chen, Zang and Zhao [2]). The fractional density W∗(G) of a multi-
graph G can be computed in polynomial time in terms of the numbers of vertices and
the numbers of edges of G.

2 Algorithm Description

We shall use the classical method proposed by Isbell and Marlow [7] that the problem
of linear-fractional programming as

α(x∗) = max
x∈S

{
α(x) =

g(x)

h(x)

}
, (1)

3

where g and h are real-valued functions on a subset S of Rn, and h(x) > 0 for all
x ∈ S, is closely related to the problem

z (x∗, α) = max
x∈S

{z(x, α) = g(x)− αh(x)}, (2)

where α is a real constant, in the sense that x∗ solves Problem (1) if and only if
(x∗, α∗) solves Problem (2) for α = α∗ = α (x∗), giving the value z (x∗, α∗) = 0. They
also proposed an iterative method for the case when both g and h are linear, which
generates a sequence of solutions to the latter problem until the above optimality
criterion is satisfied. When restricted to the calculation of W∗

f (G), S is the family of
all subsets of V with at least two vertices,

g(U) = 2w(U), and

h(U) = f(U)− σf (U)

for each U ∈ S, where σf (U) is the parity function indicating the oddness of f(U), i.e.,

σf (U) =

{
1, if f(U) is odd
0, if f(U) is even

Therefore, the objective function is

z(U, α) = 2w(U)− α(f(U)− σf (U)). (3)

Our algorithm goes as follows.

Algorithm 1 The fractional f -density algorithm
Step 0. Arbitrarily take any edge e = u0v0 ∈ E. Set k = 0, U0 = {u0, v0}, and
α0 =

w(U0)
⌊f(U0)/2⌋ .

Step 1. Find the solution Uk+1 to the problem

z (Uk+1, αk) = max
U∈V,|U |≥2

z (U, αk) . (4)

Step 2. If z (Uk+1, αk) = 0, stop: U∗ = Uk+1 is an optimal solution. Else, set
αk+1 =

w(Uk+1)

⌊f(Uk+1)/2⌋
and k = k + 1, and return to Step 1.

3 Complexity Analysis

In this section, we prove that the time complexity of Algorithm 1 is a polynomial.

4

Theorem 3.1. Given a multigraph G = (V,E), denote n = |V | and m = |E|. The
time complexity of the fractional f -density algorithm on G is O (n3m2 log (n2/m)).

We first prove that Algorithm1 terminates in polynomial steps. In fact, we observe
the strict monotonicity of αk, f(Uk) and w(Uk).

Claim 3.2. In Algorithm 1, we have for each k ≥ 1,

αk > αk−1, (5)

f(Uk+1) < f(Uk), and (6)

w(Uk+1) < w(Uk). (7)

Proof. Consider the k iteration for some k ≥ 1. We prove for (5) first. By definition,
we have αk−1 =

w(Uk−1)

⌊f(Uk−1)/2⌋
, and so z(Uk−1, αk−1) = 0. Note that z(Uk, αk−1) ̸= 0 since

otherwise U∗ = Uk is the optimal solution and the algorithm stops at the k−1 iteration.
Hence, z(Uk, αk−1) > z(Uk−1, αk−1) = 0, which in turn gives the following.

w(Uk)− αk−1

⌊
f(Uk)

2

⌋
> 0

Therefore,

αk =
w(Uk)

⌊f(Uk)/2⌋
> αk−1.

Now we prove for (6). By definition, we have

z(Uk+1, αk) = 2w(Uk+1)− αk(f(Uk+1)− σf (Uk+1))

= 2w(Uk+1)− αk−1(f(Uk+1)− σf (Uk+1)) + αk−1(f(Uk+1)− σf (Uk+1))

− αk(f(Uk+1)− σf (Uk+1))

= [2w(Uk+1)− αk−1(f(Uk+1)− σf (Uk+1))]− [(αk − αk−1)(f(Uk+1)− σf (Uk+1))].

Since Uk is the solution for (4) at the k− 1 iteration, we have z(Uk, αk−1) ≥ z(U, αk−1)

for any U ∈ V with |U | ≥ 2. It follows that

2w(Uk+1)− αk−1(f(Uk+1)− σf (Uk+1)) ≤ z(Uk, αk−1).

Then,

z(Uk+1, αk) ≤ z(Uk, αk−1)− (αk − αk−1)(f(Uk+1)− σf (Uk+1))

= [2w(Uk)− αk−1(f(Uk)− σf (Uk))]− (αk − αk−1)(f(Uk+1)− σf (Uk+1))

= [αk(f(Uk)− σf (Uk))− αk−1(f(Uk)− σf (Uk))]− (αk − αk−1)(f(Uk+1)− σf (Uk+1))

= (αk − αk−1)[(f(Uk)− σf (Uk))− (f(Uk+1)− σf (Uk+1))].

5

Recall that z(Uk+1, αk) > 0 and αk > αk−1, we have

f(Uk+1)− σf (Uk+1) < f(Uk)− σf (Uk) (8)

For the cases that f(Uk+1) and f(Uk) are of the same parity, the inequality 8 clearly
gives f(Uk+1) < f(Uk). If f(Uk+1) is even and f(Uk) is odd, then f(Uk+1) < f(Uk)−1 <

f(Uk), and so we reach the conclusion f(Uk) > f(Uk+1). Otherwise, f(Uk+1) is odd,
f(Uk) is even, so that f(Uk+1)−1 < f(Uk). Since both sides are even integers, we have
f(Uk+1)− 1 ≤ f(Uk)− 2, and so f(Uk+1) < f(Uk).

Moreover, since z(Uk, αk−1) is the maximum when fixing αk−1 for any k ≥ 1, we
have z(Uk, αk−1) ≥ z(Uk+1, αk−1), and so

2w(Uk)− αk−1(f(Uk)− σf (Uk)) ≥ 2w(Uk+1)− αk−1(f(Uk+1)− σf (Uk+1)).

From the fact that αk−1 > 0 and the inequality 8, we have

w(Uk)− w(Uk+1) ≥
αk−1

2
[(f(Uk)− σf (Uk))− (f(Uk+1)− σf (Uk+1))] > 0

Thus, w(Uk+1) < w(Uk).

Lemma 3.3. Algorithm 1 terminates in O(m) steps.

Proof. Let w∗ be the least common multiple of all denominators as in the fraction form
of each edge weight. Note that the difference of any two different sums of edge weights
is at least w∗. Since w(Uk+1) < w(Uk) for any k ≥ 1, Algorithm 1 terminates in at
most w(G)

w∗ = O(m) steps.

Since the solution for Problem (4) is not explicitly written in Algorithm 1, we first
prove that Problem (4) can be solved in polynomial time. An approach of solving
it is to convert it to a minimum cut problem. Here we introduce some definitions
needed. Fix a simple graph G = (V,E) and an edge weight function w : E → Q. For
any two disjoint vertex sets X, Y ⊆ V , we denote E[X, Y] = EG[X, Y] = {xy ∈ E :

x ∈ X and y ∈ Y }, i.e., the set of edges of G connecting X and Y , and w[X, Y] =

w(E[X, Y]) =
∑

e∈E[X,Y] w(e). A subset F of E is called a cut if F = E[X,X] for some
X ⊆ V . Moreover, if ∅ ̸= X ̸= V , then E[X,X] is called a nontrivial cut. Clearly,
∅ is a cut, and it is nontrivial if and only if G is disconnected. We call w[X,X] the
capacity of a cut E[X,X]. For two distinct vertices s, t ∈ V , we call E[X,X] an s-t

6

cut if |{s, t} ∩X| = 1. The minimum cut problem is to find an s-t cut with minimum
capacity for all s, t ∈ V .

Let |V | = n and |E| = m. Note that Menger’s Theorem implies that a minimum
s-t cut problem can be converted into finding a maximum flow between s and t in
the weighted graph G. Let τ be the time for finding a minimum s-t cut for given
s, t ∈ V . By Goldberg-Tarjan algorithm [5] for the maximum flow problem gives
that τ = O(nm log(n2/m)). Furthermore, it is shown by Gomory and Hu [6] that by
constructing a Gomory-Hu tree of G, a minimum cut can be found in time O(nτ).
Therefore, we have the following lemma.

Lemma 3.4. Let G = (V,E) be a simple graph with a rational weight w(e) (pos-
sibly negative) on each edge e ∈ E. A minimum cut of G can be found in time
O(n2m log(n2/m)).

Let T ⊆ V with |T | even. For a vertex set X ⊆ V , the cut E[X,X] is called a
T -cut if |T ∩X| is odd. The minimum T -cut problem is to find a T -cut with minimum
capacity. By applying Padberg-Rao algorithm [11], Chen, Zang and Zhao [2] proved
that the minimum T -cut problem can be solved in polynomial time.

Lemma 3.5 (Chen, Zang and Zhao [2]). Let G = (V,E) be a simple graph with a
rational weight w(e) (possibly negative) on each edge e ∈ E, and let T ⊆ V with |T |
even. Suppose all edges with negative weights are incident with a distinguished vertex s,
if any. Then a minimum T -cut for H and c can be found in time O (n2m log (n2/m))

if all weights are nonnegative and in time O (n3m log (n2/m)) otherwise.

Now, we derive the time complexity of Problem (4).

Lemma 3.6. Problem (4) can be solved in time O(n3m log(n2/m)).

Proof. Noticing that for each fixed αk, solving Problem (4) is equivalent to finding an
optimal set Uk+1 with at least two vertices such that −z(U, αk) reaches the minimum.
Since 2w(U) = d(U)− w[U,U] for any U ⊆ V , we have

−z(U, αk) = w[U,U]− d(U) + αk(f(U)− σf (U))

= w[U,U] +
∑
v∈U

(αkf(v)− d(v))− αkσf (U).

7

Inspired by Chen, Zang and Zhao [2], we add a dummy vertex r to the weighted
graph G = (V,E) and an edge between r and each vertex in v ∈ V , and obtain a
vertex-labeled edge-weighted graph G′ = (V ′, E ′) such that

• the weight of each edge e ∈ E in G′ is the same w(e) as in G;

• for each vertex v ∈ V , w(rv) = αkf(v)− dG(v);

• the label of each vertex v ∈ V is f(v); and

• the label of r is f(V) =
∑

v∈V f(v).

Since every cut of G′ is of the form EG′ [U,U ∪ {r}], where U ⊆ V . The capacity of
such a cut is

w[U,U ∪ {r}] = w[U,U] +
∑
v∈U

(αkf(v)− d(v)).

We apply Lemma 3.4, by Gomory-Hu algorithm on G′, regardless of the vertex labels,
we can find a nonempty minimum cut E[M,M ∪ {r}] in time O(n2m log(n2/m)). If
f(M) is odd, then for any X ⊆ V ,

−z(M,αk) = w[M,M] +
∑
v∈M

(αkf(v)− d(v))− αkσf (M)

= w[M,M] +
∑
v∈M

(αkf(v)− d(v))− αk

≤ w[X,X] +
∑
v∈X

(αkf(v)− d(v))− αkσf (X).

We are done by letting Uk+1 = M which is an optimal set.

Suppose f(M) is even. Noticing that the total label f(V ′) = f(r) +
∑

v∈V f(v) =

2f(V) is even, we can apply Lemma 3.5 and find an odd cut E[N,N ∪{r}] of V ′ whose
capacity is the minimum among all odd cut of V ′. The time complexity of finding such
odd cut is O(n2m log(n2/m)) when all edge weights are nonnegative, i.e., for all v ∈ V ,

αkf(v)− dG(v) ≥ 0,

which is satisfied if αk ≥ ∆f (G). Otherwise, it can be found in time O(n3m log(n2/m)).
Then, for any X ⊆ V with f(X) being odd,

w[N,N] +
∑
v∈N

(αkf(v)− d(v)) ≤ w[X,X] +
∑
v∈X

(αkf(v)− d(v)).

8

Clearly, since [M,M ∪ {r}] has the minimum capacity among all cuts, we have

w[M,M] +
∑
v∈M

(αkf(v)− d(v)) ≤ w[N,N] +
∑
v∈N

(αkf(v)− d(v)).

Moreover, if we have

w[M,M] +
∑
v∈M

(αkf(v)− d(v)) ≤ w[N,N] +
∑
v∈N

(αkf(v)− d(v))− αk, (9)

then for any X ⊆ V with f(X) being odd,

−z(M,αk) = w[M,M] +
∑
v∈M

(αkf(v)− d(v))

≤ w[N,N] +
∑
v∈N

(αkf(v)− d(v))− αk

≤ w[X,X] +
∑
v∈X

(αkf(v)− d(v))− αk

= w[X,X] +
∑
v∈X

(αkf(v)− d(v))− αkσf (X).

Meanwhile, for any X ⊆ V with f(X) being even, we also have

−z(M,αk) = w[M,M] +
∑
v∈M

(αkf(v)− d(v))

≤ w[X,X] +
∑
v∈X

(αkf(v)− d(v))

= w[X,X] +
∑
v∈X

(αkf(v)− d(v))− αkσf (X).

Therefore, Uk+1 = M is still an optimal solution.

If Inequality (9) dose not hold, then for any X ⊆ V with f(X) even,

−z(N,αk) = w[N,N] +
∑
v∈N

(αkf(v)− d(v))− αk

< w[M,M] +
∑
v∈M

(αkf(v)− d(v))

≤ w[X,X] +
∑
v∈X

(αkf(v)− d(v))

= w[X,X] +
∑
v∈X

(αkf(v)− d(v))− αkσf (X).

9

And for any X ⊆ V with f(X) odd,

−z(N,αk) = w[N,N] +
∑
v∈N

(αkf(v)− d(v))− αk

≤ w[X,X] +
∑
v∈X

(αkf(v)− d(v))− αk

= w[X,X] +
∑
v∈X

(αkf(v)− d(v))− αkσf (X).

Thus, Uk+1 = N is an optimal solution. In conclusion, if the minimum cut of G′ is
odd, Step 1 in Algorithm 1 takes time O (n2m log (n2/m)), otherwise, it takes time at
most O (n3m log (n2/m)).

References

[1] G. Chen, Y. Hao, and X. Yu, The goldberg-seymour conjecture on edge-coloring
of weighted multigraphs, Manuscript, (2023).

[2] X. Chen, W. Zang, and Q. Zhao, Densities, matchings, and fractional edge-
colorings, SIAM Journal on Optimization, 29 (2019), pp. 240–261.

[3] H.-A. Choi and S. L. Hakimi, Scheduling file transfers for trees and odd cycles,
SIAM J. Comput., 16 (1987), pp. 162–168.

[4] E. G. Coffman, Jr., M. R. Garey, D. S. Johnson, and A. S. LaPaugh,
Scheduling file transfers, SIAM J. Comput., 14 (1985), pp. 744–780.

[5] A. V. Goldberg and R. E. Tarjan, A new approach to the maximum-flow
problem, Journal of the Association for Computing Machinery, 35 (1988), pp. 921–
940.

[6] R. E. Gomory and T. C. Hu, Multi-terminal network flows, Journal of the
Society for Industrial and Applied Mathematics, 9 (1961), pp. 551–570.

[7] J. R. Isbell and W. H. Marlow, Attrition games, Naval Research Logistics
Quarterly, 3 (1956), pp. 71–94.

[8] H. Krawczyk and M. Kubale, An approximation algorithm for diagnostic test
scheduling in multicomputer systems, IEEE Trans. Comput., C-34 (1985), pp. 869
– 872.

10

[9] S. Louis Hakimi and O. Kariv, A generalization of edge-coloring in graphs,
Journal of Graph Theory, 10 (1986), pp. 139–154.

[10] S.-i. Nakano and T. Nishizeki, Scheduling file transfers under port and channel
constraints, Internat. J. Found. Comput. Sci., 4 (1993), pp. 101–115.

[11] M. W. Padberg and M. R. Rao, Odd minimum cut-sets and b-matchings,
Mathematics of Operations Research, 7 (1982), pp. 67–80.

11

	Introduction
	Algorithm Description
	Complexity Analysis

